Что такое наносенсоры и как они помогают при диагностировании и лечении заболеваний

img

 

Medvestnik.com фокусирует внимание читателей на достижениях современной фундаментальной науки в области нанотехнологий, открывающих новые возможности для диагностики, лечения и профилактики целого ряда заболеваний.


Наночастицы, нанотехнологии и другие слова с «нано» появились в лексиконе примерно с десяток лет назад, когда актуальным стал курс на инновационную экономику и развитие наноиндустрии.


Однако история нанорешений гораздо длиннее, а их применимость очень широка. Особенных успехов в применении нанотехнологий достигла медицина.


Как повились нанотехнологии?


История нанотехнологий начинается с лауреата Нобелевской премии по физике Ричарда Фейнмана, который в 1959 году прочитал лекцию с забавным названием There's Plenty of Room at the Bottom («Внизу полным-полно места»).


Тогда он отметил, что с точки зрения законов физики нет никаких ограничений для работы на молекулярном и атомном уровнях. Для подобной работы, конечно же, нужно соответствующее оборудование, которое может измерять, оценивать, анализировать столь маленькие объекты.


 


Термин же «нанотехнологии» предложил в 1974 году японский физик Норио Танигути. Под этим названием подразумеваются манипуляции с мельчайшими объектами — их размеры составляют от одной десятой нанометра до ста нанометров. Для сравнения: диаметр человеческого волоса составляет восемьдесят тысяч нанометров.


В чем же привлекательность нанообъектов? Маленькие объекты приобретают специфические свойства: к примеру, небольшие группы атомов золота и серебра проявляют каталитические (ускоряющие процесс) свойства, в то время как большие группы чаще инертны.


Такая особенность маленьких частиц объясняется тем, что у них увеличивается отношение поверхности к объему — это позволяет им легче вступать в химические реакции.


Что такое наносенсоры


Существенный прогресс в области нанотехнологий стал возможен после создания методов, позволяющих проводить формирование наноструктур и наблюдение за ними (сканирующая туннельная микроскопия в 1981 году и атомно-силовая микроскопия в 1986 году).


В дальнейшем это привело к появлению наносенсоров — объектов, содержащих чувствительные наноэлементы, которые воспринимают параметры анализируемого объекта (например, состав воздуха или крови) и передают их в виде пригодного для практического использования сигнала.


По типу анализируемых объектов наносенсоры делятся на три класса:

  • физические наносенсоры — выявляют физические параметры анализируемых объектов;

  • химические наносенсоры — выявляют химический состав объекта и наличие тех или иных веществ в окружающей среде;

  • биологические наносенсоры (бионаносенсоры) — выявляют физиологическое состояние анализируемых объектов, наличие биологических веществ в окружающей среде.

Наносенсорами интересуются представители разных сфер деятельности, в том числе и медицины. Важнейшая цель диагностической медицины — выявление проблемы в максимально короткий срок, чтобы позволить врачам лечить пациентов до того, как произойдут необратимые или долгосрочные повреждения.

  • Одна из важнейших проблем, возникающих при диагностике медицинских состояний, состоит в том, что симптомы некоторых заболеваний проявляются только после определенного периода времени. 

К тому моменту заболевание уже достигает той стадии, когда лечение становится более сложным, дорогим и зачастую менее результативным, чем если бы эта проблема была обнаружена раньше.


Наиболее яркий пример — это диагностика злокачественных новообразований, таких, как рак поджелудочной железы, который часто не сопровождается симптомами на ранней стадии.


Другим примером может служить инфицирование имплантата, что приводит к избыточному формированию рубцовой ткани. Когда инфицирование протеза становится очевидным, единственным решением становится его удаление и замена на новый.


Наносенсоры, созданные из углеродных нанотрубок (углеродные пластинки, свернутые в крошечные трубки), позволяют ускорить процесс диагностики. Они позволяют обнаружить заболевание на начальных стадиях развития за счет того, что их малый размер дает возможность точно регистрировать параметры объектов, локализованных в очень малых объемах.


К примеру, бионаносенсоры могут свободно циркулировать в потоке крови и скапливаться около клеток-мишеней или возле конкретных молекул, обнаруживая генетические дефекты в ДНК, поврежденные клетки или токсические вещества. Разработаны биосенсоры и для селективного определения фенолов, глутамина, молочной и аскорбиновой кислот, глюкозы, аммония и других веществ.


Существует и другой вариант наносенсора — нанопроволока, перспективный материал для диагностики. Ее поверхность без труда поддается химической модификации, что позволяет легко нанести на нее распознающие элементы для различных молекул и получать актуальную информацию о процессах, происходящих в живой клетке, без нарушения ее целостности и жизнеспособности.


Кроме диагностики, наносенсоры уже сейчас проявляют себя в терапии. У углеродных нанотрубок есть огромный потенциал для доставки лекарственных препаратов в необходимую локацию, а также для роли нагревательного элемента, способного разрушительно воздействовать на новообразования.


Нанотехнологии значительно улучшают систему доставки лекарств и делают ее безопаснее, нацеливая их терапевтические свойства только на пораженные участки тела, что особенно актуально в онкологии.


Как еще нанотехнологии используют в медицине


Ученые активно исследуют нанотехнологии и успешно находят им новое применение. Так, исследователи из Вустерского политехнического института используют антитела, прикрепленные к углеродным нанотрубкам в чипах, чтобы обнаружить раковые клетки в кровотоке или небольшом количестве крови, взятой у больного раком.


Исследователи считают, что этот метод может быть использован в простых лабораторных тестах, которые могут обеспечить раннее обнаружение онкологического заболевания.


Американские ученые также работают над повышением эффективности лучевой терапии колоректального рака с использованием наночастиц серебра и пегилированного графена (соединенного с полиэтиленгликолем) в качестве радиосенсибилизаторов.


In vitro наночастицы продемонстрировали впечатляющие результаты по внутриклеточному поглощению радиационно-чувствительными и относительно радиационно-устойчивыми клетками колоректального рака.


После введения наночастиц мышам с опухолями и проведения радиосенсибилизации значительно снизился рост колоректальных опухолей и увеличилось время выживания по сравнению с результатами лечения только облучением.


Перспективы рынка наносенсоров


По прогнозам, рынок наносенсоров с 2017 года по 2023 вырастет в среднем на 33,73% и достигнет общего размера рынка в $1,1 млрд США. Широкий спектр применения нанотехнологий (энергетика, оборонная промышленность, экология, здравоохранение) побуждает крупнейшие компании инвестировать в эту сферу.


Таким образом, при активном развитии нанотехнологий мельчайшие частицы смогут радикально изменить современную медицину — уже сегодня нанотехнологии используются в глобальном масштабе и предлагают широкие возможности для улучшения диагностики и лечения ряда заболеваний.


Не останавливаясь на специфической проблеме риска применения нанотехнологий, "МВУ" хотел бы вкратце коснуться и обратной стороны достижений в виде этических проблем, рождающих сложные социальные вопросы. К примеру, уже сегодня с помощью нанотехнологий генетические исследования плода представляются более доступными, но возникает проблема прерывания беременности  при определенной патологии, и тема аборта становится предметом общественных дебатов.


Другая проблема – связь между медицинским и немедицинским использованием нанотехнологий в диагностических, терапевтических и профилактических целях. Суть вопроса – должны ли использоваться наноматериалы для изменения тела человека, если с медицинской точки зрения они не являются необходимыми.


Особого внимания заслуживают вопросы, связные с вмешательством в интеллектуальные способности человека и определением некоего конечного срока жизни при возможности её продления. Темной стороной предстаёт милитаризация науки - использование достижений нанотехнологий в военном деле.


Согласно заявлению группы по этике в науке и новых технологиях Европейской комиссии наиболее проблематичным является вопрос согласия на проведение медицинских мероприятий. Только в случае исчерпывающего информирования желание пациента будет независимым.